
1. Introduction
The Madden-Julian Oscillation (MJO) is the dominant mode of subseasonal tropical variability (Zhang, 2005; 
Zhang et al., 2013). Because of its intense modulation of tropical convection, it affects weather patterns and 
extreme events around the globe (Zhang, 2013). These effects include heat waves, cold waves, tropical cy-
clones, fires, and extreme rainfall events. The MJO lies at the subseasonal interface between weather and 
climate, so these effects can be critical for long-range forecasts. This study will examine the MJO's modula-
tion of land-based extreme rainfall around the globe.

Numerous studies have examined the MJO's effects on precipitation extremes, but most of these have been 
regional in scale. For example, flooding events in Sumatra (in the heart of the MJO's convective variabil-
ity) tend to initiate when the MJO is over the Indian Ocean (phases 2–3) (Baranowski et al., 2020). The 
MJO's winds also interact strongly with the large topography and moisture availability over South America. 
When the MJO's convection is over the Central Pacific and Western Hemisphere (phases 8–1), an enhanced 
South Atlantic Convergence Zone (SACZ) can lead to extreme rainfall over northeastern Brazil (Carvalho 
et al., 2004; Grimm, 2019; Hirata & Grimm, 2016; Shimizu et al., 2017).

The MJO's teleconnections also affect extreme precipitation outside the tropics. For example, extreme pre-
cipitation events in the United States are significantly more likely when the MJO is active (particularly 
over the Indian Ocean) than when it is not (Jones & Carvalho, 2012). The MJO modulates drivers for ex-
treme rainfall like atmospheric rivers (Baggett et al., 2017; Mundhenk et al., 2018; Ralph et al., 2011) and 
tropical cyclones (Barrett & Leslie, 2009; Klotzbach, 2010; Kossin et al., 2010; Maloney & Hartmann, 2000; 
Mo,  2000). When the MJO is over the Western Hemisphere (phases 8–1), it also significantly enhances 
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extreme precipitation over arid Southwest Asia (Barlow et  al.,  2005; Hoell et  al.,  2018; Nazemosadat & 
Shahgholian, 2017; Nazemosadat et al., 2021).

Despite these regional studies, Jones et al. (2004) provided the only global study of precipitation extremes 
with the MJO. These extremes broadly followed the MJO's convective envelope and included many of the 
regional examples above. Aggregated globally, they found that extreme events occurred 40% more often 
when the MJO was active than when it was not. Jones et al. (2004) also demonstrated the ability of a general 
circulation model (GCM) to replicate these broad patterns.

The current study provides a more complete picture of the MJO's global effects on the most societally rel-
evant extreme rainfall events. It builds upon Jones et al. (2004) in several key ways. Most importantly, this 
study uses a higher definition of extreme events. Jones et al.  (2004) used the 75th percentile of raining 
pentads, which ensured a large sample size but diluted the societal impact. The current study uses 2-year 
events, which are much more extreme (>99.5th percentile) and more likely to cause flooding and other 
societal impacts (Leopold, 1968). This study will also explore all seasons whereas Jones et al. (2004) only 
examined November–April. Finally, they used Global Precipitation Climatology Project (GPCP) data, which 
are 5-day means on a coarse 2.5° grid. This study will leverage the new NASA IMERG (Integrated Multi-sat-
ellitE Retrievals for the Global Precipitation Measurement Mission) data set (Huffman et al., 2015, 2019), 
which is a daily 0.1° grid. This fine resolution allows us to exclude precipitation over the oceans where it is 
less societally relevant.

2. Data
The NASA IMERG data are used for June 1, 2000–June 30, 2020. Only data over land 60°S–60°N are used 
here. Satellite-based precipitation data sets like IMERG notoriously underestimate the magnitudes of ex-
treme precipitation events relative to gauge-based measurements (Prat & Nelson, 2020). However, IMERG 
is particularly good at estimating events with short return-periods like the 2-year events examined here 
(Fang et al., 2019). Using the same data set to define and detect the extreme events also mitigates the under-
estimation since the absolute amplitude of the event is not relevant.

MJO phases are determined using the Wheeler and Hendon (2004) index. Only days when the MJO ampli-
tude is greater than one standard deviation are used. Velocity potential anomalies at 200 hPa are taken from 
the Climate Forecast System Reanalysis (CFSR) (Saha et al., 2010) for 1998–2010 and the related Climate 
Forecast System v2 (CFSv2) operational analyses (Saha et al., 2014) for 2011–2020. These are plotted by the 
MJO phase to illustrate the broader MJO circulation.

3. Methods
3.1. Defining Extreme Events

Following Bosma et al. (2020), extreme rainfall events are defined herein as 2-year events. The 2-year event 
threshold is calculated by determining the annual maximum at each gridpoint for each year during 2001–
2019 (omitting 2000 and 2020, which only had partial data). The median of these 19 annual maxima is the 
2-year precipitation intensity at that location. Daily rainfall events are examined here, but similar results 
were obtained for 5-day events (not shown). Since a 2-year event occurs on average once every 730 days, it 
represents approximately the wettest 0.14% of days (including those without rain), which is much higher 
than other typical definitions for extreme events like the 75th–95th percentiles.

A 2-year event is advantageous because it is extreme enough to produce societal impacts (Leopold, 1968). 
However, it is statistically stable since its calculation does not depend on any parameterized extreme 
value analysis. It is also more useful from a communication standpoint than concepts like a 10-year or 
100-year flood, which can be confusing to users who are more likely to have a frame of reference for a 
2-year event.

Figure 1a maps the thresholds for a 2-year event, which generally mirror the distribution of mean precip-
itation (not shown). In the wettest tropical regions, the 2-year event intensity can exceed 200 mm while it 
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can be as low as 10–20 mm day−1 in deserts. However, the rarity of precipitation in arid areas means that 
even these small amounts can have societal impacts (Hoell et al., 2018; Nazemosadat & Shahgholian, 2017)

Extreme rainfall events have a strong seasonality (Figures 1b–1e), which also follows the annual cycle of 
mean precipitation (not shown). In most regions, 2-year events only happen during one or two seasons. 
Over the Sahel and East Asia, for example, they happen almost exclusively during JJA. If the frequency of 
these events during other seasons is zero, then the JJA frequency would be around 0.5 events per 100 days 
or once every other JJA.

3.2. Statistical Significance

The counts per phase are normalized to the number of events per 100 days. Statistical significance is evalu-
ated using the cumulative distribution function for a binomial distribution. A point is considered significant 
(green pixels in Figures 2–5) if there is less than a 5% chance that the observed number of events would 
occur within the number of days in a particular phase given the climatological probability (Figures 1b–1e).

For example, the MJO spent 268 days in phases 2–3 during December–February (DJF) (Figure 2a). If the 
climatological frequency at a gridpoint was exactly one in 2 years (0.14 events per 100  days), then that 

Figure 1. (a) 2-year event intensity threshold. Number of 2-year events by season: (b) December–February, (c) March–
May, (d) June–August, and (e) September–November.



Geophysical Research Letters

SCHRECK

10.1029/2021GL094691

4 of 9

gridpoint would be significantly above climatology (green) if it had at 
least two events in the 268 days (0.75 events per 100 days). Brown pix-
els are those for which the climatological probability is nonzero but no 
events were observed for that phase. White pixels are areas where either 
the number of events is not significantly different from climatology or no 
events occur during that season regardless of the MJO (zero climatology).

Each global map has around 300,000 nonzero points. This large num-
ber of hypothesis tests raises the potential for false discoveries. In each 
map, around 20% of the nonzero points pass the 0.05 local significance 
level. This large fraction is virtually impossible by random chance, al-
though this counting method can be too permissive for correlated data 
sets (Wilks,  2006). An alternative is the “false discovery rate” (FDR), 
which weights each p-value by its rank relative to the total number of 
tests. Maps with at least one point passing the 0.10 level for the FDR are 
denoted with an * next to the sample size to indicate field significance 
(e.g., Figure 2d).

4. Results
4.1. December–February (DJF)

Figure 2 illustrates the MJO's impacts on 2-year rainfall events for DJF. It 
shows the number of events that occur at each IMERG grid point by the 
MJO phase. Extreme rainfall events are rare by definition, and the IM-
ERG data have 0.1° horizontal resolution. As a result, the maps of 2-year 
events by the MJO phase are noisy with areas of significant increases 
(green) interspersed with those of no significant change (white) or even 
no events at all (brown).

During phases 2–3 (Figure 2a), the MJO's upper-level divergence is cen-
tered over the Indian Ocean, but the extreme events occur along its pe-
riphery over East Africa and the western Maritime Continent (Figure S1a 
in Supporting Information S1). Eastern Brazil also experiences enhanced 
extreme rainfall in phases 2–3, but these are more widespread when the 
upper-level divergence is closer in phases 8–1 (Figures  2d and  S2d in 
Supporting Information S1).

During phases 4–5 (Figures 2b and S1b in Supporting Information S1), 
the tropical enhancement of extreme rainfall shifts eastward to the 
Philippines and northern Australia. Jones et al. (2004, their Figure 6) 
found widespread enhancement of extreme rainfall in the seas around 
Indonesia in phases 4–5, but the higher spatial resolution of the IM-
ERG data more clearly demonstrates that the impact is more limit-
ed over the islands during these phases, consistent with Baranowski 
et al. (2020).

The enhancement over northeastern Australia becomes stronger in phases 6–7 (Figures 2b and S1c in 
Supporting Information S1) even though the upper-level divergence is over the Pacific. The Australian 
signal is stronger than that found by Jones et al. (2004), who also found the enhancement to be more 
focused on phases 4–5. The Central Andes also experience enhanced extreme rainfall on the eastern 
edge of the MJO's envelope during these phases (Figure S2b in Supporting Information S1). In phases 
8–1 (Figure 2d), the largest tropical enhancement is over Brazil, which is within the MJO's divergent 
upper-level circulation.

Figure 2. Normalized number of events for December–February in 
Madden-Julian Oscillation phases (a) 2–3, (b) 4–5, (c) 6–7, and (d) 8–1. 
White areas are not significantly greater than normal, brown areas have 
zero events during those phases, and green areas have significantly more 
events than normal. Contours illustrate the 200-hPa velocity potential 
anomalies contoured every 2 × 106 m2 s−1 with negative (divergent) values 
in green and positive (convergent) values in brown. Sample number of 
days for that phase are in the upper right with a * denoting maps that 
passed field significance at the 0.10 level (Wilks, 2006).
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In the subtropics, the MJO's modulation of extreme rainfall is particu-
larly strong around the Mediterranean and Southwest Asia. Phases 6–7 
demonstrate a strong subtropical enhancement over Egypt, northern 
Saudi Arabia, and Iraq (Figure S3a in Supporting Information S1). It be-
comes even more widespread across the region in phases 8–1 (Figure S3d 
in Supporting Information S1) as the MJO's upper-level divergence over 
Africa becomes stronger. The threshold for a 2-year event is much lower 
in these arid regions (Figure 1a), which could make these events easier to 
produce than in wetter regions. Satellite-based precipitation estimates are 
also particularly uncertain over these arid regions (Fang et al., 2019; Prat 
& Nelson, 2020). However, neither of these uncertainties could explain 
the coherent evolution of these events with the MJO phase, which are 
consistent with Jones et al. (2004) and previous studies of the region (Bar-
low et al., 2005; Hoell et al., 2018; Mansouri et al., 2021; Nazemosadat & 
Shahgholian, 2017; Nazemosadat et al.,  2021). However, none of these 
previous studies noted the signal over northern Africa.

In addition to the tropical and subtropical signals, Figure 2 also shows 
signals that are less directly tied to the MJO's convective envelope. For ex-
ample, phases 4–5 show an enhancement near the central United States, 
which could be associated with a northward shift in the jet during these 
phases (Becker et al., 2011). Phases 8-1 bring increased events to the U.S. 
West Coast, which is consistent with impacts on atmospheric rivers there 
(Baggett et al., 2017; Mundhenk et al., 2018; Ralph et al., 2011). Similar 
changes in the extratropical wavetrains lead to enhanced extreme rainfall 
near the Parana-La Plata Basin of South America during phases 4–5 as 
well (Figure S2b in Supporting Information S1) (Grimm, 2019; Hirata & 
Grimm, 2016).

4.2. March–May (MAM)

Figure  3 repeats the analysis for MAM when most regions experience 
fewer extreme precipitation events (Figure 1c). North Africa and South-
west Asia experience a similar modulation by the MJO between DJF and 
MAM with an enhancement in phases 6–7 and 8–1 (Figures 3c and 3d). 
East Africa is also generally similar between these seasons with the larg-
est enhancement in phases 2–3 and the greatest suppression in phases 
6–7.

Australia, on the other hand, has a much less organized pattern during MAM, in part because these events 
are less common during those months (Figure 1c). Australia experiences 2-year events over scattered re-
gions during all the MJO phases with the notable exception of phases 8–1 when they are rare. The clearest 
signals over South America during MAM are an enhancement over southern Argentina in phases 4–5 (Fig-
ure 3b) and central Chile in phases 8–1 (Figure 3d).

4.3. June–August (JJA)

During JJA, 2-year events are primarily concentrated near the Sahel and East Asia (Figure 1d). Two-year 
events are suppressed over the Sahel within upper-level convergent (brown contours, convectively sup-
pressed) phases of the MJO, particularly phases 4–5 (Figure S4b in Supporting Information S1). Extreme 
events are also inhibited over Central America during these phases consistent with Barrett and Esquivel 
Longoria (2013). They are most frequent over the Sahel during phases 2–3 when the MJO is over the Indian 

Figure 3. As in Figure 2 but for March–May.
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Ocean, but many areas are not significantly different from climatology 
in phases 8–1 or 2–3. The MJO also enhances extreme precipitation in 
central Chile during phase 8–1 as in Barrett et al. (2012).

The MJO's modulation of extreme rainfall is less organized over East 
Asia (Figures 4 and S5 in Supporting Information S1). The strongest en-
hancement occurs during phases 4–5 when the upper-level divergence is 
closest (Figure S5b in Supporting Information S1). Two-year events are 
particularly frequent in these phases for southern India, Southeast Asia, 
northern China, and the coast of the Yellow Sea. However, the enhanced 
regions are surround by large areas that received no 2-year events during 
these phases.

4.4. September–November (SON)

The global frequency of 2-year events is more uniform during SON. 
Most of the global land experiences at least some extreme precipitation 
during SON, but <5% of gridpoints exceed 0.5 events per 100 days. The 
most active regions for these events during SON are North America, 
northwestern Africa, southern Europe, southern India, and Southeast 
Asia. The events over the southeastern U.S. are significantly more 
frequent during phases 2–3 (Figures  5a and  S6a in Supporting  Infor-
mation S1) and rare during phases 6–7 (Figure 5c and S6c in Support-
ing  Information  S1). These patterns align well with the MJO's mod-
ulation of Atlantic tropical cyclone activity (Barrett & Leslie,  2009; 
Klotzbach, 2010; Kossin et al., 2010), which is the dominant driver of 
extreme precipitation for that region and season (Kunkel et  al.,  2010; 
Prat & Nelson, 2013a, 2013b, 2016).

The MJO relationship is weaker over northwestern Africa and south-
ern Europe with enhanced 2-year events during phases 2–3 and again 
in phases 6–7 (Figures  5a and  5c). However, they are broadly sup-
pressed in those regions during phases 8–1. Southern India and South-
east Asia predominantly experience these during phases 4–5 in SON 
(Figure 5b).

5. Conclusions
This study leverages the unprecedently high spatial resolution and global coverage of the NASA IMERG 
precipitation data to examine the MJO's impacts on extreme rainfall around the globe. Most studies of the 
MJO and precipitation extremes have focused on individual regions. Jones et al. (2004) examined the global 
impacts of the MJO during November–May. The current study extends those results in several key ways: 
examining other seasons, using higher spatial resolution data, focusing on land areas, and using a higher 
definition of extreme events (2-year events).

Jones et al.  (2004) found that the extreme events generally follow the MJO's convective envelope in the 
tropics. However, those results were driven primarily by events over the ocean. The higher spatial resolution 
of IMERG allows us to focus on land where the societal impacts are greatest. As in Jones et al. (2004), Aus-
tralia and Brazil both experience extreme precipitation most frequently when they are near the center of the 
MJO's convective envelope. In most other parts of the tropics and subtropics, however, the extreme events 
occur on the periphery of the upper-level divergence. Based on previous regional studies, these extreme 
events are often associated with changes in moisture transport by the MJO's low-level winds. For example, 
the extreme precipitation over Southwest Asia during phases 8–1 is associated with enhanced moisture flux 
from the Arabian Sea in association with the MJO (Barlow et al., 2005; Hoell et al., 2018; Nazemosadat & 
Shahgholian, 2017)

Figure 4. As in Figure 2 but for June–August.
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In the extratropics, the modulation of extreme events is less likely to be 
tied to the MJO's primary circulation. For example, the MJO's modula-
tion of Atlantic tropical cyclone activity leads to variations in extreme 
rainfall over the Southeast during SON. Similarly, the MJO modulates the 
PNA during the winter (Riddle et al., 2013) which in turn modulates the 
frequency of atmospheric rivers and extreme precipitation along the West 
Coast of North America (Baggett et al., 2017; Mundhenk et al., 2018). It 
can take 1–2 weeks for the MJO's tropical forcing to result in these ex-
tratropical responses (Baxter et al., 2014; Matthews et al., 2004), so some 
of their effects may have been diluted in this study by examining only 
instantaneous phases in the current study.

Jones et al. (2004) demonstrated the ability of a global circulation model 
with fixed SSTs to replicate many of these relationships. Numerical mod-
els can now skillfully forecast the MJO out to 3 weeks (Kim et al., 2014; 
Vitart & Molteni, 2010), so the results of this study may have significant 
value for subseasonal prediction of extreme rainfall. It would be valuable 
to examine how well they can now predict its extreme rainfall events. The 
results could be leveraged to develop subseasonal forecasts of extreme 
event probability, which could prove invaluable to farmers and water re-
source managers.

Finally, it is well-established that climate change is making extreme rain-
fall events more common (IPCC, 2021). However, it is not clear how that 
trend would affect the relationship between the MJO and extreme events. 
Would events become more common in all phases, even those current-
ly inhibited? Or would they simply become more common in the phas-
es that already favor them? Additional modeling should examine these 
questions.

Data Availability Statement
All data used in this manuscript are publicly available. The NASA IMERG 
data may be obtained from https://doi.org/10.5067/GPM/IMERGDF/
DAY/06. The MJO index was obtained from http://www.bom.gov.au/
climate/mjo/. CFSv2 data were obtained from https://rda.ucar.edu/data-
sets/ds094.0/ and the CFSR from https://rda.ucar.edu/datasets/ds093.0/.
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